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Abstract

The card game SET involves finding groups o f  three cards called SETs. Choices 

are based upon the individual card characteristics, including shape, pattern, 

number, and color. Previously, the maximum number o f  cards that can be played 

without creating a SET has been determined as 20 cards by extensive computer 

work. This report further explored the probabilities and possibilities o f  the game. 

Using discrete mathematics and probability, we explored how many SETs are 

possible and what strategies led to the most points. Additionally, this project 

exercised undergraduate logic and reasoning to generalize the results in order to 

be applied in other fields o f  study. Furthermore, we investigated different 

methods o f  selecting and ordering cards, trying to find the minimum cards needed 

to guarantee a SET.
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Introduction

Game theory is about strategy and prediction. It is used to predict outcomes of certain 

situations and to pick a strategy that can lead the player to his/her desired outcome. Game 

theory has a multitude of applications, including biology, business, economics, athletics, 

warfare, and politics [1]. Game theory can help analyze anything from whether a prisoner 

should plead guilty to predicting the chances of winning at a card game. Therefore, game 

theory is the logical analysis of situations of conflict and cooperation [1].

In Game Theory and Strategy by Straffin, a game is defined to be:

i.) A situation in which there are at least two players.

ii.) Each player has a number of possible strategies, courses of action which

he or she may choose to follow.

iii.) The strategies chosen by each player determine the outcome of the game,

iv.) Associated to each possible outcome of the game is a collection of

numerical payoffs, one to each player. These payoffs represent the value of the 

outcome to the different players. [1]

As will be shown in the "How to Play" section of this paper, SET qualifies under this definition as 

a game that can be analyzed by game theory. This project explores the strategy and tries to 

predict the possible outcomes of the game SET. The project will look at how players pick cards, 

what SETs players should be looking for, and how players should search for cards.
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History of the Game

The game SET has origins in a German Shepherd Genome Project in Cambridge, England, 

1974 [2]. Population geneticist Marsha Jean Falco was researching genes trying to discover if 

epilepsy in German Shepherds was inherited. Falco used cards to organize her data on the 

genes of the dogs, and used symbols to represent certain shared traits: different properties of 

the card would represent different gene combinations [2]. Falco would then search for certain 

SETs of cards to try to find the source of genetic epilepsy, if there was any. Finding the fun 

value in the cards, Falco taught her family how to play, and they convinced her to market the 

game [2].

Since its first marketing in 1990, SET has won over 25 Best Game Awards, including "Top 

100 Games of 2005" from Games Quarterly Magazine and ASTRA (American Specialty Toy 

Retailing Association) Top Toy Pick in 1996 [3].

How to Play

SET can be played with one or more players. To set up the game, shuffle the deck of 81 

cards and designate a dealer. The dealer will put out new cards as SETs are picked up. The 

dealer is also allowed to play. To begin, the dealer arranges 12 cards from the deck in a 3x4 

rectangle, face-up on the table. Players must call SET before picking up the SET so that every 

other player may verify that it is a SET. Each SET is worth one point. If a player calls SET but 

does not actually have a SET, the player loses a point. The player with the most points when

there are no more cards or SETs left is the winner of the game.
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Figure 2: Different color, same symbol, same number, different pattern.

Figure 3: Different color, different symbol, different number, same pattern.

Figure 1: Same color, same symbol, same number, different pattern.

Here are some examples of SET types:

What is a SET?

Every card has a combination of color, pattern, symbol, and number. We call these broad 

categories the characteristics of the card. Therefore, we see every card has four characteristics. 

Within those characteristics are different options: color can be red, green, or purple; symbol 

can be ovals, squiggles, or diamonds; shading can be solid, open, or striped; and number can be 

one, two, or three symbols. We call these properties. Each characteristic has three properties. 

Since a SET is made up of three cards, to make a SET, each of the three cards in the SET have 

properties that are either all the same or all different.



SET: The Probabilities and Possibilities 5

Figure 4: Different color, different symbol, different number, different pattern.

Any group of one to three same properties in any combination will be a SET as long as any 

characteristic that does not have the same properties has all different properties. Notice that 

there is not a SET for all four characteristics to be the same. That is because there is only one of 

every card, making each card unique in the deck.

Characteristic and Property Symbols:

The following symbols will be used within this project to refer to cards and SETs with certain 

properties of characteristics.

A card will be denoted by (Number, Color, Shape, Pattern)

a) For Number (N): 1,2, or 3

b) For Color (C): R for red, G for Green, or P for purple

c) For Shape (S): 0 for oval, D for diamond, or S for squiggle

d) For Pattern (P): s for solid, e for empty, p for striped.

e) For example, (l,G,D,e) is a card with one empty green diamond. This can also be written 

(IGDe), without commas.

When stating a SET's properties, (N,C,S,P)

a) + will stand for same properties



SET: The Probabilities and Possibilities 6

b) ~ will stand for different properties

c) For example, (+N,~C,~S,+P) is a SET with the same number of similar patterned different 

shapes of different colors.

Probability Background:

Before we begin, there are some definitions and theorems to be described. Among these are 

the basic principle of counting, permutations, and binomial coefficients.

The basic principle of counting is also known as the Fundamental Counting Principle (FCP). 

This principle states that if r experiments are to be performed are such that the first one may 

result in any of n1 possible outcomes, and if for each of these n1 possible outcomes there are n2 

possible outcomes of the second experiment, and if for each of the possible outcomes of the 

first two experiments there are n3 possible outcomes of the third experiment, and if...then

n1

In simpler terms, the FCP tells us that we can take any number of different events, count the 

number of possible outcomes, and multiplying the number of possible outcomes from each 

event together to find the total amount of possible outcomes. We could easily prove this 

principle by drawing a tree diagram of our events and counting the sample space created from 

the data.

Another important word to understand is permutation. A permutation is an arrangement of 

objects. In other words, we are putting the objects in a certain order, then seeing how many 

other ways we can arrange the items so that we end up with a new order within our

∙ n2 ... nr possible outcomes of the r experiments. [4]there is a total of



SET: The Probabilities and Possibilities 7

arrangement. We use n factorial, or n!, to show the permutations of an object. This proof uses 

reasoning from the basic counting principle. Suppose we have n objects. To pick the first 

object, we have n objects to choose from. To select the second object, we can no longer 

choose that first object, so we have (n-1) objects to choose from. Continuing this reasoning and 

the pattern

n(n-1)(n-2)...(3)(2)(1) emerges, o r  n!. [4]

At times, we need to look at the number of ways to choose a certain number of objects from a 

group. In general, n(n-1)...(n-r+1) represents the number of different ways of selecting r items 

when the order of selection is relevant. Each group of r items is actually counted more than 

once with this method. If fact, they are counted r! times. Therefore, we can modify our formula

The final definition to be discussed is the binomial coefficient , called n choose r,

represents the number of possible combinations of n objects taken r at a time.

as .  [4]

.
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Results

Theorem 1: There are 81 unique combinations of characteristics.

There are 34, or 81, unique combinations of the characteristics. See Table 1. The proof of this 

theorem is easy. Using the Fundamental Counting Principle, we can find the total sample 

space, also called the possible number of combinations where order does not matter.

Proof: We are given four categories: Number, color, shape, and pattern. Those categories each

have 3 properties, therefore, by FCP, we have 3x3x3x3 total possible outcomes, also written as

1 ROs 1GOe 1POp 2ROs 2GOe 2POp 3ROs 3GOe 3POp
1ROp 1 GOs 1POe 2ROp 2GOs 2POe 3ROp 3GOs 3POe
1ROe 1 GOp 1POs 2ROe 2GOp 2POs 3ROe

3RDs
3GOp 3POs

3PDp1RDs 1GDe 1PDp 2RDs 2GDe 2PDp 3GDe
1RDp 1GDs 1PDe 2RDp 2GDs 2PDe 3RDp 3GDs 3PDe
1RDe 1GDp 1PDs 2RDe 2GDp 2PDs 3RDe 3GDp 3PDs
1RSs 1 GSe 1PSp 2RSs 2GSe 2PSp 3RSs 3GSe 3PSp
1RSp 1 GSs 1PSe 2RSp 2GSs 2PSe 3RSp 3GSs 3PSe
1RSe 1 GSp 1PSs 2RSe 2GSp 2PSs 3RSe 3GSp 3PSs

Table 1: Every card in notation form. There are 81 cards.

Corollary: There are a" unique combinations of characteristics.

34.

Proof: For any combination where there are an equal amount of properties to each

characteristic, there are a ∙ a ∙ a ∙ a....∙ a total number of possible outcomes, a being multiplied

as many times as there are characteristics, where a is the number of different properties of
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each characteristic, and n is the number of characteristics. If there are n characteristics, then,

Theorem 2: Two arbitrarily drawn cards can only make a SET with one other card.

For an example, suppose you pick an arbitrary card, (2,P,O,p). Since each card is unique (and a 

card cannot make a SET with itself), you pick another arbitrary card, suppose (1,R,O,e). In order 

to make a SET, characteristics must be either all the same or all different. Already, we see 

characteristics (~N, ~C, +S, ~P). This means, in order to have a SET, the third card must follow 

the pattern laid down by the first two cards. Since same properties must be kept and there is 

only one property left to be different, we see we only have one choice to be the third choice, 

that is, (3,G,O,s). Since each card is unique, only one card in the deck will complete the SET.

Proof: We prove this by cases that look at the comparison of characteristics from the first card 

to the second, and the resultant third card.

Case 1: If the two cards chosen share no common characteristics and have four different 

characteristics, then the third card must also share no common characteristics and have four 

different characteristics. Since there are only three properties for each characteristic and two 

of the properties have been claimed by each the first card and the second card, for each 

characteristic, to complete the SET, the third card must contain the single leftover property of 

each characteristic. As there is only one choice for each property and, as each card is unique, 

there is only one possible card to complete the SET.

there are an unique combinations.
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Case 2: If the two cards chosen share one common characteristic and three different 

characteristics, then the third card must also share one common characteristic and three 

different characteristics. The common characteristic will be the same as the first and second 

card. For the different characteristics, since there are only three properties, for each 

characteristic and two of the properties have been claimed by each the first card and the 

second card for each characteristic, we will have to complete the SET with the single leftover 

property of each of the three different characteristics. We have shown there is only one choice 

for each property and as each card is unique, there is only one possible card to complete the 

SET.

Case 3: If the two cards chosen share two common characteristics and two different 

characteristics, then the third card must also share two common characteristics and two 

different characteristics. Using the same reasoning as the first two cases, the common 

characteristics will be the same as the first and second card. For the different characteristics, 

since there are only three properties for each characteristic and two of the properties have 

been claimed by each the first card and the second card for each characteristic, we will have to 

complete the SET with the single leftover property of each of the two different characteristics. 

We have shown there is only one choice for each property and as each card is unique, there is 

only one possible card to complete the SET.

Case 4: If the two cards chosen share three common characteristics and one different 

characteristic, then the third card must also share three common characteristics and one

different characteristic. Once again we see for the three common characteristics, the property
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Here is another approach by David Van Brick that proves through the characteristics as well, 
that is less general, but easier to apply to the game of SET. The proof is by construction, in four 
steps.

1. If the two cards are of the same shape, then the third card has that shape; 

otherwise, it must have whatever shape is not on either of the two first cards.

2. if the two cards are of the same shading, then the third card has that shading; 

otherwise, it must have whatever shading is not on either of the two first cards.

3. If the two cards are of the same color, then the third card has that color; 

otherwise, it must have whatever color is not on either of the two first cards.

4. If the two cards are of the same number, then the third card has that number; 

otherwise, it must have whatever number is not on either of the two first cards.

If you go through these four steps, you will find the unique third card that

completes any two cards' SET. [5]

Therefore, two arbitrarily drawn cards only make a SET with one other card.

will be the same as the first and second card. For the different characteristics, since there are 

only three properties for each characteristic and two of the properties have been claimed by 

each the first card and the second card for each characteristic, we will have to complete the SET 

with the single leftover property for the different characteristic. We have shown there is only 

one choice for each property and as each card is unique, there is only one possible card to 

complete the SET.
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Corollary: If we have n cards in a SET and have chosen n-1 cards for our SET, there is only 

one possible solution for our final card.

Proof: Suppose there are n number of properties for c amount of characteristics. Then 

there are n number of cards in a SET (Notice that the number in a SET will always be the 

same as the number of different properties of a certain characteristic in order to be able 

to use every property in a "different" property SET). If we have drawn all the cards 

except for one, we have chosen n-1 properties from n properties in a SET. This means 

we have chosen n-(n-1) properties, which is n-n+1, or just 1 property in each 

characteristic left. And we see no matter the amount of characteristics, if we have all 

but one of the cards, there is only one property left for each characteristic, creating a

arbitrary card. From theorem 2, there is only 1 card option to complete the SET. Those two

singular result for our final card in the SET.

Proof: Arbitrarily draw a card. From the deck of 81, there are now 80 cards. Pick another

Originally, it seems as though this proof will be as simple as We divide by 3!, since every

SET would be counted 6 times due to permutations: i.e. (1ROs), (1ROp), and (1ROe); (1ROs), 

(1ROe), and (1ROp); (1ROp), (1ROs), and (1ROe); (1ROe), (1ROp), and (1ROs); (1ROp), (1ROe), 

and (1ROs); and (1ROe), (1ROs), and (1ROp) are all the same set by (+N,+C,+S,~P) . However, as 

we see later in proposition 1, we cannot just pick three cards out at random, as this method 

suggests, and expect them to make a SET. Therefore, we look for other methods.

Theorem 3: An arbitrary card has 40 possible SETs.
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cards will not be able to be used in any other SET, so we remove them from the deck. Now 

there are 78 cards. Continuing to make SETs will use 2 cards at a time until they are all used. 

Therefore, an arbitrary card can make 80/2 or 40 possible SETs. See Table 2 below.

How do we know this works all the time? It seems as though at least one of those cards would 

have been used in another SET beforehand, keeping every card from being used in perfect SETs. 

Luckily, we know we can make exactly 40 SETs from any one card from Theorem 2. Since we 

have used the first card already, any card we choose second will only have 1 third choice. 

Suppose we have used that third card already. By theorem 2, the only card we could have used 

it for would be the second card. Therefore, we see there are no overlaps within those 40 SETs 

made from one card. The same is not true when we release the SETs from being made with 

one card and look at all the SETs at the same time, which is mentioned later in the paper.

Corollary: An arbitrary card has possible SETs.

Table 2: One card is selected, showing 40 SETs made using all of the other cards.

Selected:
1GOe

1ROs

1POe 1GOp
1POp

1PDe 1GSp
2PDp 3GSe
3PDp 2GSe
2GDe 3PSp
1GOs 1POs
2ROs 3ROs
1GDs 1PSs
2RDp 3RSe

2POe
2POs
2PDe

3GOp
3GOs
3GSp

2PDs
2PSp
2PSe
2PSs
2GDs
2GDp
2GSs 3PDs

3PSe
3PSs
3GDs
3GDp

3GSs
3GDe

1RSp
1RDp
1GDp
1PSp
1GSs
2ROp
2GOe
2POp
2GOs
2GOp 3Poe

3Pos
3GOe
3Pop
2Roe
1PDs
1GDe
1PSe
1RSe
1RDe 2GSp 3PDe

2RDe 3RSp
2RSp 3RDe
3RDp 2RSe
3ROp 3ROe
1ROp 1ROe
1RDs 1RSs
1PDp 1GSe
2RDs 3RSs
2RSs 3RDs
Total: 40 SETs
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Proof: Let n be the number of cards in a deck. Then the number of cards available to make SETs 

with after choosing one is n-1. Now let c be the number of cards in a SET. Because we have 

already chosen one card of the set we now have c-1 cards to find in the SET. So we can put 1 

card with n-1 different cards into c-1 sized groups. This will be counting each group, c-1 extra 

times, once for every card from the first to the "c-1"st card. To compensate for this, we arrive at 

our final formula:

Theorem 4: You are most likely to make a SET with 1 same property characteristic, and 3 

characteristics with all different properties.

Recall from section "What is a SET?" that there are four different ways to make a set based 

upon the properties of each characteristic of the cards, such as color or shape, and those 

properties such as having 1,2, or 3 ovals, diamonds, or squiggles. What we want to do is to look 

at the breakdown of SETs to see which SET-type occurs the most. Our hypothesis would be all 

different would have the most because there seems to be more variety in the SETs. However, 

our hypothesis was proven false. The results showed that permutations were the key to the 

most SETs.

Proof: To start this proof, we will use the FCP to find the number of cards that will make up the 

SETs of each type of SET, assuming we have already drawn the first card.

1 Same, 3 Different: The first card has already decided the property of our first

characteristic, so we have 1 choice for that and that is our same characteristic. For our
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second characteristic, we have two choices, because we cannot choose the same 

property as the first card in order to make a different characteristic. The same 

reasoning holds for the third and fourth characteristics, and we end up with 1∙ 2 ∙ 2 ∙ 2 = 

8 card options.

2 Same, 2 Different: 1∙ 1 ∙ 2 ∙ 2 = 4 card options.

3 Same, 1 Different: 1∙ 1 ∙ 1 ∙ 2 = 2 card options.

4 Different: 2 ∙ 2 ∙ 2 ∙ 2 = 16 card options.

At this point, it looks like 4 different characteristics will have the most card options, but now we 

need to look at permutations. To find the permutations, we need to look at a binomial

coefficient where n will be the number of positions and k will be the number of same

properties.

1 Same, 3 Different: = 4 permutations

Now, we take the card options from earlier and multiply by the number of 

permutations.

8 ∙ 4 = 32 card options or 16 possible SETs.

2 Same, 2 Different: = 6 permutations

4 ∙ 6 = 24 card options, 12 SET options.

3 Same, 1 Different: = 4 permutations

,
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Selected: 1ROs

2  ∙ 4 = 8 card options, 4 SET options.

4 Different: = 1 permutation

16 ■ 1 = 16 card options, 8 SET options.

As a check, we made sure these SET options all add up to 40 (from theorem 3), and they do. 

See Table 3 below to see how this looks.

Table 3: The SETs made from one card from Table 2 grouped by type.
Total: 16 SETs Total: 8 SETs

3 Same 1ROp
2ROs
1GOs
1RDs

1ROe
3ROs
1POs
1RSs

Total: 4 SETs

2 Sames 2GOs
1POe
1GOe
2POs
1GSs
1RSp
2RSs
2RDs
1GDs
2ROe
1RDp
2ROp

3POs
1GOp
1POp
3GOs
1PDs
1RDe
3RDs
3RSs
1PSs
3ROp
1RSe
3ROe

Total: 12 SETs

1 Same 2RDp
2GOp
1PDe
2POe
1PDp
2POp
2PDs
2GOe

3RSe
3POe
1GSp
3GOp
1GSe
3GOe
3GSs
3POp

2GDs
2GSs
2RDe
2RSp
2RSe
2PSs
1GDp
1PSp

3PSs
3PDs
3RSp
3RDe
3RDp
3GDs
1PSe
1GDe

No
Sames 2GDe

2PDp
2GSe
2PDe
2GDp
2GSp
2PSp
2PSe

3PSp
3GSe
3PDp
3GSp
3PSe
3PDe
3GDe
3GDp
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Corollary 1: 81-Card Deck SET breakdown.

In the whole deck, we will have t, the number of SETs in a particular type, times  81, the number

of cards in the deck, divided by 3 to account for repeats. That is,

Therefore:

1 Same, 3 Different : = 432

2 Same, 2 Different: = 324

3 Same, 1 Different: = 108

4 Different: = 216

We check ourselves again by seeing if they add up to 1080 SETS (theorem 5), and they do.

Corollary 2: There are SETs of k-same, d-different SET-type for a particular card.

Proof: Suppose we have already arbitrarily drawn a card. Let d be the number of different 

characteristics for the intended SET-type (i.e. the three-sames-and-one-different SET listed 

above would give d a value of 1). Let k be the number of same characteristics (i.e. the three- 

sames-and-1-different SET listed above would give k a value of 3). Let m be the number of 

properties within each characteristic (i.e. for characteristic color, there are 3 properties: red, 

purple, and green) and m should be a constant for all characteristics.

.
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We know from our theorem 4 that this formula will be the FCP of the number of cards that will 

make up the SETs of each type of SET (That is, when we are trying to make a SET, we have four 

different types of SETs we can make with that card (See "What is a SET?")) times the 

permutations.

For the FCP, for every same-type characteristic, we must continue to use that first chosen 

property, which means we have 1k options. For every different-type characteristic, we must 

choose another different property of that characteristic for each the other two cards that will 

complete our SET. We cannot use our first property option, therefore our different 

characteristic options will be given by d(m-1).

We arrive at 1k d (m-1).

Now we look at the permutations. Let n be the number of positions in the permutation and k

=  1k d (m  —  1)  ∙

We have now arrived at the number of cards that will make up each SET type. The final step 

will be to group those cards by 2 in order to pair with our originally chosen card in SETs, rather

than by number of card choices.

again be the number of same properties. We know our permutations will be given by

1k d (m-1) ∙

=

.
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Therefore,

Proposition 1: You cannot arbitrarily pick sets and use all the cards.

During a normal game, players pick the first SETs they see. This can be described as picking 

arbitrary SETs. And the end of the game, there are often cards left over in which no SETs are

present. Thus, you cannot arbitrarily pick sets and use all the cards.

Theorem 5: There are 1080 possible SETs.

Proof: For this calculation, consider Theorem 3. If any card has 40 possible SETs, then the deck 

of 81 cards has 81x40, or 3240 SETs. However, consider that there will be repeats within that. 

This calculation has counted every SET three times, once for each of the three cards in the SET.

Therefore, the real number of possible SETs is 3240/3, or 1080 SETs.

Corollary: There are possible SETs in the entire deck.

Proof: Consider Theorem 3 Corollary 1. If any card has possible SETs, where n is the

number of cards in the deck and c is the number of cards in a SET, then the entire deck has a

total of SETs, or SETs. However, this formula counts every set c times, so we

need to divide our formula by c, finding our final formula as:

.
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How many cards can be laid down without a SET being present?

It is best to start with a definition of what is not a SET. Three cards are not a SET anytime "two 

cards are and one is not." For example, if two cards have same or different properties for at 

least one characteristic, and the third card does not following the established pattern (whether 

it be different or same), then the cards do not make a set.

One way of guaranteeing a SET will not be present is to only pick 2 of the 3 types of properties 

from each characteristic (24=16). Therefore, there can never be three cards with all the same or 

all different characteristics. Could there only be 16 cards without SETs? Counter example:

Figure 5. This method does not account for every card that could be picked that would 

guarantee a SET is not present.

Figure 5: A selection of 20 cards with no SETs [6]
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The SET Company offers the table in Figure 6 to show how many cards can be placed without a 

SET being present:

Figure 6 A mapping of 20 cards with no SETs. [7]

In Figure 6, a SET is created whenever there are three dots in a row in a single box (i.e. 

horizontally, vertically, or diagonally) or whenever a dot is repeated in the same section of the 

3-by-3 boxes (i.e. the middle of any three will be a SET or 3 separate boxes making a horizontal, 

vertical, or diagonal line of dots). The question remains as to the number of cards that 

guarantee a SET is present.

How many cards guarantee a SET?

Guaranteeing a SET will be defined as the lowest number of cards where there is at least one 

SET present and will always be present.

For this exploration, we will refer to the tree diagram in figure 7 below.
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Figure 7: A tree diagram showing all red cards.

The tree diagram in figure 7 shows 27 cards, all the cards in one color. In the whole deck, the 

tree diagram would consist of three such trees, one more for each of the colors green and 

purple.

Like in any tree diagram, our last section gives us the sample space. It is where we can look to 

see every possible option. Now, we want to focus on one particular branch, shown below:

Figure 8: A tree diagram showing all red cards of only a single item.

Figure 8 shows our card breakdown when two characteristics are restricted. From this, we can

derive the following theorem.
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Theorem 6: When two characteristics are restricted, 5 cards guarantee a SET.

Proof: Let any two characteristics be restricted. Therefore, there are two unrestricted 

characteristics, three properties each. By theorem 1 corollary, there are now 32 cards, or nine 

cards. Choose any two cards. These cards automatically have two same characteristics, and 

any SET made with these cards will have to be made with the remaining 7 cards (they are the 

only cards that will have the same first characteristic and the same second characteristic). From 

theorem 2, these two cards will only make a SET with one other card. We shall set that card to 

the side, in order to find the maximum number of cards it will take to guarantee a SET. There 

are now 2 cards chosen and 6 remaining cards to choose from. We choose another card. Now,

we have possible pairs, or 3 possible pairs, one we already chose and two new ones.

Therefore, we must remove two cards that will make SETs and put them aside as well. We now 

have 3 chosen cards and 3 remaining cards to choose from.

We continue the pattern:

= 6, subtract the pairs we have already made, 3, and we find that three cards will make a

SET with our chosen cards. Now we have chosen 4 cards and have set aside a total of 6 cards 

(more than the nine we started with suggesting overlap within the SETs. This will not affect the 

outcome because the overlap is in the cards we are not choosing).

Let us chose another card. Wait! The only cards that we can choose now are the ones we set

aside because they complete SETs. At this point, any fifth card chosen will guarantee a SET.

Theorem 7: When one characteristic is restricted, 13 cards will guarantee a SET.
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Proof: Consider theorem 6: 5 cards guarantee a SET when two characteristics are restricted. If 

we release one of those restricted characteristics, our sample space becomes 33 cards big, or 27 

cards. We now have three identical branches in our tree to work with. In order to guarantee a 

SET, we must guarantee that at least 5 cards have gotten down at least one of those branches. 

In better terms, we have at least 5 cards that have the same second characteristic. We have 

three characteristics. If we put the maximum cards without guaranteeing a SET in each of 

them, we have 3∙4, or 12 cards without guaranteeing a SET. We easily see, then, that any one 

card added will mean we will have at least 5 cards with at least two same characteristics, which 

from theorem 6, guarantees a SET. Therefore, 13 cards will guarantee a SET when only one

characteristic is restricted.

Theorem 8: When no characteristics are restricted, 37 cards will guarantee a SET.

Proof: Consider theorem 6 and the logic that took us from two restricted to one restricted 

characteristic. We will consider the same reasoning to prove the case of no restrictions. We 

need to show how many cards it will take to guarantee 13 cards, all with the same first 

characteristic. From theorem 1, we know we now have 81 cards and 3 properties. We can 

easily see that 36 cards can only guarantee as many as 12 cards in each characteristic with no 

SETs present. However, at 37 cards, we can guarantee that at least one of the first 

characteristics has the 13 cards needed to guarantee a SET. Therefore, we see 37 cards

guarantees a SET.

The problem with theorems 6 and 7 is that they fail to take into consideration different- 

different-different-same SET-types and different-different-different-different SET-types.
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Unfortunately, we do not believe that anything short of extreme calculations done by a 

computer will give us a definite proof in these two cases.

Experimenting with the cards found that 10 cards became our guaranteed-SET-amount 

when one characteristic was restricted. From this find, we know that at least 28 cards would 

guarantee a SET if we unrestricted all characteristics and we can speculate that seven cards 

made SETs across the colors ( the different-different-different-different SET-type), since we

know 21 is the actual number of cards to guarantee a SET.
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Conclusions

We see that just a small portion of characteristics and properties can make choosing 

three specifically related cards incredibly complex. With 1080 options to make SETs, there are 

a lot of possibilities when playing. This gives us lots of options for how a game will go, too 

many for a person to try. This leads me to believe that if we want any more significant progress 

from this point, we will need either much more complex mathematical abilities or computer- 

help, especially in the case of the number of cards that will guarantee a SET.

The most surprising result turned out to be the breakdown of SET-type. This will help 

any player trying to find SETs quickest. Outside of this game or other games related to it, we do 

not see any further-reaching consequences. The most interesting result was that 2-cards could 

only make a SET with one other card. While a simple concept once known, before this 

discovery, the game is at least 79-times more difficult to play and to try to prove.

This project has uncovered the math behind simple genetic tracking. Just like we found 

when trying to guarantee a SET, when working with the genes of a species, the complexity 

makes us turn to computers to do the intricate calculations. As such, this project can be 

explored more by looking at contemporary methods that have been developed alongside 

genetic research.

This project has discovered more about how SETs are made, where there will be SETs, 

and when there will be SETs. We have explored many probabilities of types of sets. This project 

also visited the main proof of how many cards guarantee a SET. We were hoping to be able to
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logic-out this proof based upon our earlier finds, but there are too many unknowns to make a 

definitive proof just based on what we found. There may still be methods of picking cards to 

find the minimum amount of cards that need to be played in order to guarantee a SET. We 

would like also to look at the graduate-level math of that MacLagen and Davis report [6] and try 

to understand their methods.

We would have liked to explore how our results could have been applied to game 

theory and genetic theory, unfortunately there was insufficient time to extend this 

investigation. This project also has room to expand toward interdisciplinary applications. Our 

formulas may be able to be used in other fields and in other similar games. Perhaps the 

formulas could help advertisers better select the ads to place based upon previous items 

bought or viewed. However, we were always more interested in just really knowing how this

particular game, SET, works and the math behind our entertainment.



SET: The Probabilities and Possibilities 28

Literature Cited

[ l]Straffin, P. D. (1993). In Zorn P. (Ed.), Game theory and strategy. New York: The 

Mathematical Association of America.

[2]Marsha jean falco - the creative genius behind SET. Retrieved October 21, 2010, from 

http://www.setgame.com/set/history.htm

[3]Awards. Retrieved October 23, 2010, from

http:// www.setgame.com/company/all_awards.htm

[4] Ross, S. (2006). A first course in probability. New Jersey: Pearson Prentice Hall.

[5] Brink, D. V. (1997). The search for SET. Retrieved October 21, 2010, from

http://omino.com/set/

[6] Davis, B., & MacLagan, D. (2002). The card game SET. Penn State University). Retrieved

from http://www.math.rutgers.edu/~maclagan/papers/set.pdf

[7] No SET Mapping. Retrieved March 15, 2011, from http://setgame.com/set/noset.htm

http://omino.com/set/
http://www.math.rutgers
http://setgame.com/set/noset.htm

	University of Lynchburg
	Digital Showcase @ University of Lynchburg
	Spring 5-3-2011

	SET: The Probabilities and Possibilities
	Tabitha K. Bollinger
	Recommended Citation


	tmp.1559570191.pdf.gpmGD

