Poster or Presentation Title

Effects of a Gliadin Digest on RAW 264.7 Macrophages as a Model for Celiac Disease

Location

Virtual | Room 4

Access Type

Open Access

Presentation Type

Oral Presentation

Start Date

7-4-2021 11:00 AM

End Date

7-4-2021 11:15 AM

Department

Biomedical Science

Abstract

Celiac disease causes disruption in the intestinal mucosa when exposed to gliadin-containing grains. The immune system’s response to gliadin is an intricate molecular signaling cascade involving the adaptive and innate immune systems. A majority of research in this area focuses upon the adaptive immune system, however, recent work suggests the innate immune system plays a significant role. Macrophages are innate immune system cells that work to protect a host organism from infection. RAW 264.7 Murine macrophages serve as a model for inflammatory responses by producing nitric oxide in response to an inflammatory stimulus. Experiments determined the level of macrophage activation from pepsin-trypsin digested gliadin (PT-gliadin) and undigested gliadin in comparison to an untreated control and a known stimulant, bacterial Lipopolysaccharide. Concentrations of PT-gliadin showed evidence of a dose response effect with 100 ug/mL, inducing a moderate stimulus and 500 and 1000 ug/mL stimulating a higher level of response. No significant differences were found between macrophage activation when exposed to 1000 ug/mL PT- gliadin and undigested gliadin. Determining the ability of gliadin to stimulate the RAW 264.7 macrophages will allow for investigation of potential roles for macrophages in the inflammatory process induced by gliadin.

Faculty Mentor(s)

Dr. David Freier
Dr. Jennifer Styrsky
Dr. Priscilla Gannicott

Rights Statement

The right to download or print any portion of this material is granted by the copyright owner only for personal or educational use. The author/creator retains all proprietary rights, including copyright ownership. Any editing, other reproduction or other use of this material by any means requires the express written permission of the copyright owner. Except as provided above, or for any other use that is allowed by fair use (Title 17, §107 U.S.C.), you may not reproduce, republish, post, transmit or distribute any material from this web site in any physical or digital form without the permission of the copyright owner of the material.

This document is currently not available here.

Share

COinS
 
Apr 7th, 11:00 AM Apr 7th, 11:15 AM

Effects of a Gliadin Digest on RAW 264.7 Macrophages as a Model for Celiac Disease

Virtual | Room 4

Celiac disease causes disruption in the intestinal mucosa when exposed to gliadin-containing grains. The immune system’s response to gliadin is an intricate molecular signaling cascade involving the adaptive and innate immune systems. A majority of research in this area focuses upon the adaptive immune system, however, recent work suggests the innate immune system plays a significant role. Macrophages are innate immune system cells that work to protect a host organism from infection. RAW 264.7 Murine macrophages serve as a model for inflammatory responses by producing nitric oxide in response to an inflammatory stimulus. Experiments determined the level of macrophage activation from pepsin-trypsin digested gliadin (PT-gliadin) and undigested gliadin in comparison to an untreated control and a known stimulant, bacterial Lipopolysaccharide. Concentrations of PT-gliadin showed evidence of a dose response effect with 100 ug/mL, inducing a moderate stimulus and 500 and 1000 ug/mL stimulating a higher level of response. No significant differences were found between macrophage activation when exposed to 1000 ug/mL PT- gliadin and undigested gliadin. Determining the ability of gliadin to stimulate the RAW 264.7 macrophages will allow for investigation of potential roles for macrophages in the inflammatory process induced by gliadin.